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Abstract Several combinatorial problems, such as car sequencing and rostering, fea-
ture sequence constraints, restricting the number of occurrences of certain values
in every subsequence of a given length. We present three new filtering algorithms for
the sequence constraint, including the first that establishes domain consistency in
polynomial time. The filtering algorithms have complementary strengths: One bor-
rows ideas from dynamic programming; another reformulates it as a regular con-
straint; the last is customized. The last two algorithms establish domain consistency,
and the customized one does so in polynomial time. We provide experimental results
that demonstrate the practical usefulness of each. We also show that the customized
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algorithm applies naturally to a generalized version of the sequence constraint
that allows subsequences of varied lengths. The significant computational advantage
of using a single generalized sequence constraint over a semantically equivalent
collection of among or sequence constraints is demonstrated empirically.

Keywords Sequence constraint · Domain consistency · Polynomial time filtering ·
Car sequencing · Regular constraint

1 Introduction

The sequence constraint appears in several combinatorial problems such as car
manufacturing and rostering. It can be regarded as a collection of among constraints
that must hold simultaneously. An among constraint restricts the number of variables
that can be assigned a value from a specific subset of domain values. For example,
consider a nurse-rostering problem in which each nurse can work at most 2 night
shifts during every 7 consecutive days. The among constraint specifies the 2-out-of-
7 restriction, while the sequence constraint imposes such a constraint for every
subsequence of 7 days.

The sequence constraint has been a topic of study in the constraint programming
community since 1988, when the car sequencing problem was first introduced [7].
Initially, the various among constraints underlying the sequence constraint were
treated individually. Beldiceanu and Contejean [4] first proposed to view them
together as one global sequence constraint. The constraint is also referred to as
among_seq [3].

Beldiceanu and Carlsson [2] proposed a filtering algorithm for the sequence
constraint, while Régin and Puget [13] presented a filtering algorithm for the se-
quence constraint in combination with a global cardinality constraint [11] for a car
sequencing application. Neither approach, however, establishes domain consistency.
As the constraint is inherent in many real-life problems, improved filtering can have
a substantial industrial impact.

In this work we present three novel filtering algorithms for the sequence
constraint. The first is based on dynamic programming concepts and runs in poly-
nomial time, but does not establish domain consistency. The second algorithm is
based on the regular constraint [10] and establishes domain consistency. It needs
exponential time in the worst case, but in many practical cases it is very efficient. Our
third algorithm establishes domain consistency in polynomial time and is the first
to do so. It can be applied to a generalized version of the sequence constraint in
which the subsequences considered may be of varied length. Moreover the number
of occurrences may also vary per subsequence. Each algorithm has advantages over
the others, either in terms of (asymptotic) running time or in terms of filtering.

Our experimental results demonstrate that our newly proposed algorithms sig-
nificantly improve the state of the art. On individual sequence constraints, these
algorithms are much faster than the standard (partial) filtering implementations
available in the Ilog Solver library; they often reduce the number of backtracks
from over a hundred thousand to zero or near-zero. On the car sequencing problem
benchmark, these algorithms are able to solve more instances or achieve substantial
speed-up (either on their own or as a redundant constraint added to the Ilog sequence



Constraints (2009) 14:273–292 275

constraint). Finally, when certain more complex combinations of among constraints
are present, such as in the rostering example above, our generalized sequence
constraint implementation is able to treat them all as a single global constraint, and
reduces the filtering time from around half an hour to just a few seconds.

The rest of the article is structured as follows. Section 2.1 presents some back-
ground and notation on constraint programming, while Section 2.2 recalls and
discusses the among and sequence constraints. Sections 3, 4, and 5 describe our
three new filtering algorithms for the sequence constraint. Section 6 compares the
algorithms experimentally. Finally, Section 7 summarizes the contributions of the
work and discusses possible extensions.

2 Background

We first introduce basic constraint programming concepts and then discuss in detail
the two constraints of interest: among and sequence. For more information on
constraint programming we refer the reader to [1] and [5].

2.1 Constraint programming preliminaries

Let x be a variable. The domain of x is the set of values that can be assigned to x
and is denoted by D(x). In this work we only consider variables with finite domains.
Let X = x1, x2, . . . , xk be a sequence of variables. We denote D(X) = ⋃

1≤i≤k D(xi).
A constraint C on X is defined as a subset of the Cartesian product of the domains
of the variables in X, i.e. C ⊆ D(x1) × D(x2) × · · · × D(xk). A tuple (d1, . . . , dk) ∈ C
is called a solution to C. We also say that the tuple satisfies C. A value d ∈ D(xi) for
some i = 1, . . . , k is inconsistent with respect to C if it does not belong to a tuple of C,
otherwise it is consistent. C is inconsistent if it does not contain a solution. Otherwise,
C is called consistent.

A constraint satisfaction problem, or a CSP, is defined by a finite sequence of
variables X = x1, x2, . . . , xn, together with a finite set of constraints C , each on a
subsequence of X. The goal is to find an assignment xi = di with di ∈ D(xi) for
i = 1, . . . , n, such that all constraints are satisfied. This assignment is called a solution
to the CSP.

The solution process of constraint programming interleaves constraint propaga-
tion, or propagation in short, and search. The search process essentially consists of
enumerating all possible variable-value combinations, until we find a solution or
prove that none exists. We say that this process constructs a search tree. To reduce the
exponential number of combinations, constraint propagation is applied to each node
of the search tree: Given the current domains and a constraint C, remove domain
values that do not belong to a solution to C. This is repeated for all constraints until
no more domain value can be removed. The removal of inconsistent domain values
is called filtering.

In order to be effective, filtering algorithms should be efficient, because they are
applied many times during the solution process. Further, they should remove as many
inconsistent values as possible. If a filtering algorithm for a constraint C removes
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all inconsistent values from the domains with respect to C, we say that it makes C
domain consistent. Formally:

Definition 1 (Domain consistency, [9]) A constraint C on variables x1, . . . , xk is
called domain consistent if for each variable xi and each value di ∈ D(xi) (i =
1, . . . , k), there exist a value d j ∈ D(x j) for all j �= i such that (d1, . . . , dk) ∈ C.

In the literature, domain consistency is also referred to as hyper-arc consistency or
generalized-arc consistency.

Establishing domain consistency for binary constraints (constraints defined on two
variables) is inexpensive. For higher arity constraints this is not necessarily the case
since the naïve approach requires time that is exponential in the number of variables.
Nevertheless the underlying structure of a constraint can sometimes be exploited to
establish domain consistency much more efficiently.

2.2 The among and sequence constraints

The among constraint restricts the number of variables that can be assigned a value
from a specific subset of domain values:

Definition 2 (Among constraint, [4]) Let X = x1, x2, . . . , xq be a sequence of vari-
ables and let S be a set of domain values. Let 0 ≤ � ≤ u ≤ q be constants. Then

among(X, S, �, u) = {(d1, . . . , dq) | ∀i ∈ {1, . . . , q} di ∈ D(xi),

� ≤ |{i ∈ {1, . . . , q} : di ∈ S}| ≤ u}.

Establishing domain consistency for the among constraint is not difficult. Sub-
tracting from �, u, and q the number of variables that must take their value in S, and
subtracting further from q the number of variables that cannot take their value in S,
we are in one of four cases:

1. u < 0 or � > q: the constraint is inconsistent;
2. u = 0: remove values in S from the domain of all remaining variables, making

the constraint domain consistent;
3. � = q: remove values not in S from the domain of all remaining variables, making

the constraint domain consistent;
4. u > 0 and � < q: the constraint is already domain consistent.

The sequence constraint applies the same among constraint on every q consec-
utive variables:

Definition 3 (Sequence constraint, [4]) Let X = x1, x2, . . . , xn be an ordered se-
quence of variables (according to their respective indices) and let S be a set of domain
values. Let 1 ≤ q ≤ n and 0 ≤ � ≤ u ≤ q be constants. Then

sequence(X, S, q, �, u) =
n−q+1∧

i=1

among(si, S, �, u),

where si represents the subsequence xi, . . . , xi+q−1.
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In words, the sequence constraint states that at least � and at most u values in
S are assigned to every subsequence of q consecutive variables. Note that working
on each among constraint separately, and hence locally, is not as powerful as rea-
soning globally. In particular, as the following example shows, establishing domain
consistency on each among of the conjunction does not ensure domain consistency
for sequence.

Example 1 Let X = x1, x2, x3, x4, x5, x6, x7 be an ordered sequence of variables
with domains D(xi) = {0, 1} for i ∈ {3, 4, 5, 7}, D(x1) = D(x2) = {1}, and D(x6) =
{0}. Consider the constraint sequence(X, {1} , 5, 2, 3), i.e., every sequence of five
consecutive variables must account for two or three 1’s. Each individual among is
domain consistent but it is not the case for sequence: value 0 is unsupported for
variable x7. (x7 = 0 forces at least two 1’s among {x3, x4, x5}, which brings the number
of 1’s for the leftmost among to at least four.)

Establishing domain consistency for the sequence constraint is not nearly as easy
as for among. The algorithms proposed so far in the literature may miss such global
reasoning. For instance, the filtering algorithm proposed by Régin and Puget [13] and
implemented in Ilog Solver does not filter out 0 from D(x7) in Example 1.

Remark 1 When � equals u, domain consistency can in fact be established in linear
time. Specifically, if there is a solution, then xi must equal xi+q because of the con-
straints ai + ai+1 + · · · + ai+q−1 = � and ai+1 + · · · + ai+q = �. Hence, if one divides
the sequence up into n/q consecutive subsequences of size q each, they must all
look identical. Thus, establishing domain consistency now amounts to propagating
the “settled” variables (i.e. xi for which D(xi) ⊆ S or D(xi) ∩ S = ∅) to the first
subsequence and then applying the previously described algorithm for among. Two
of the filtering algorithms we describe in this article establish domain consistency in
the general case, i.e., when � does not necessarily equal u.

Without loss of generality, we shall consider instances of sequence in which
S = {1} and the domain of each variable is a subset of {0, 1}. Indeed, using the
element(x, t, x′) constraint, which states that x′ is equal to the value in table t
that is indexed by x, we can define t to map every value in S to 1 and every other
value (i.e., D(X) \ S) to 0, yielding an equivalent instance on new variables. For
example, let D(x) = {1, 2, 3, 4, 5} for some variable x and S = {1, 2, 4}. The constraint
element(x, [1, 1, 0, 1, 0], x′) yields D(x′) = {0, 1} and x′ = 1 if and only if x ∈ S. An
among or sequence constraint restricting the number of times x takes values in S
can thus be equivalently represented by a constraint restricting the number of times
x′ takes the value 1.

3 A graph-based filtering algorithm

We first propose a filtering algorithm that considers the individual among constraints
of which the sequence constraint is composed. It begins by filtering the among
constraints for each sequence of q consecutive variables si, similar to the dynamic
programming approach taken by Trick [14] to filter knapsack constraints. It then
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filters the conjunction of every pair of consecutive sequences si and si+1. This is
presented as SuccessiveLocalGraph (SLG) in Algorithm 1, and discussed below.

3.1 Filtering individual among constraints

The individual among constraints are filtered with the algorithm FilterLocalGraph.
For each sequence si = xi, . . . , xi+q−1 of q consecutive variables in X = x1, . . . , xn,
we build a directed graph Gsi = (Vi, Ai) as follows. The vertex set and the arc set are
defined as

Vi = {
v j,k | j ∈ {i − 1, . . . , i + q − 1} , k ∈ {0, . . . , j}} ,

Ai = {
(v j,k, v j+1,k) | j ∈ {i − 1, . . . , i + q − 2} , k ∈ {0, . . . , j} , D(x j+1) \ S �= ∅}

⋃ {
(v j,k, v j+1,k+1) | j∈{i − 1, . . . , i + q − 2} , k∈{0, . . . , j} , D(x j+1)∩S �=∅}

.

In words, the arc (v j,k, v j+1,k+1) in the graphs represents variable x j+1 taking its
value in S, while the arc (v j,k, v j+1,k) represents variable x j+1 not taking its value in
S. The index k in v j,k represents the number of variables in xi, . . . , x j that take their
value in S.

For each local graph Gsi , we define a set of goal vertices as
{
vi+q−1,k | � ≤ k ≤ u

}
.

We then have the following immediate result:

Lemma 1 A solution to the among constraint on sequence si corresponds to a directed
path from vi−1,0 to a goal vertex in Gsi , and vice versa.

Next we apply Lemma 1 to make individual among constraints domain consistent.
For the among constraint on sequence si, we remove all arcs that are not on any path
from vi−1,0 to a goal vertex in Gsi . This can be done in linear time (in the size of the
graph, �(q2)) by breadth-first search starting from the goal vertices. If the filtered
graph contains no arc (v j,k, v j+1,k) for all k, we remove S from D(x j+1). Similarly, we
remove D(X) \ S from D(x j+1) if it contains no arc (v j,k, v j+1,k+1) for all k.

Example 2 Let X = x1, x2, x3, x4, x5, x6 be an ordered sequence of variables with
domains D(xi) = {0, 1} for i ∈ {1, 2, 3, 4, 6} and D(x5) = {1}. Let S = {1}. Consider
the constraint sequence(X, S, 4, 2, 2). The filtered local graphs of this constraint
are depicted in Fig. 1.

:S

x3 x4 x2 x3 x4 x5 x3 x4x1 x5 x6

S

x2

Fig. 1 Filtered local graphs of Example 2
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3.2 Filtering a sequence of among constraints

We next filter the conjunction of two “consecutive” among constraints. Our algo-
rithm has a “forward” phase and a “backward” phase. In the forward phase, we
compare the among on si with the among on si+1 for increasing i, using the algorithm
Compare (see Algorithm 1). This is done by projecting Gsi+1 onto Gsi such that
corresponding variables overlap. Doing so, the projection keeps only arcs that appear
in both original local graphs. We can either project vertex vi+1,0 of Gsi+1 onto vertex
vi+1,0 of Gsi , or onto vertex vi+1,1 of Gsi . We consider both projections separately,
and label all arcs “valid” if they belong to a path from vertex vi,0 to goal vertex in
Gsi+1 in at least one of the composite graphs. All other arcs are labeled “invalid”, and
are removed from both the original graphs, Gsi and Gsi+1 . In the backward phase,
we compare the among on si with the among on si+1 for decreasing i, similar to the
forward phase.

Algorithm 1 A graph-based filtering algorithm for the sequence constraint

SUCCESSIVELOCALGRAPH X S q u begin
build a local graph Gsi for each sequence si (1 i n q)
for i 1 n q do

FILTERLOCALGRAPH Gsi

for i 1 n q 1 do
COMPARE Gsi Gsi 1

for i n q 1 1 do
COMPARE Gsi Gsi 1

end

sub FILTERLOCALGRAPH Gsi begin
mark all arcs of Gsi invalid .
by breadth-first search, mark every arc on a path from vi 1 0 to a goal vertex valid
remove all invalid arcs

end

sub COMPARE Gsi Gsi 1
begin

mark all arcs in Gsi and Gsi 1 invalid
for k 0 1 do

project Gsi 1 onto vertex vi k of Gsi

by breadth-first search, mark all arcs on a path from vi 1 0 to a goal vertex in Gsi 1
valid

remove all invalid arcs
end

3.3 Analysis

The time complexity of SuccessiveLocalGraph is polynomial since the local graphs
are all of size O(q · u). Hence FilterLocalGraph runs in O(q · u) time, which is
called n − q times. The algorithm Compare similarly runs for O(q · u) steps and is
called 2(n − q) times. Thus, the filtering algorithm runs in O((n − q) · q · u) time. As
u ≤ q, it follows that the algorithm runs in O(nq2) time.
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As mentioned earlier, SuccessiveLocalGraph does not establish domain consis-
tency for the sequence constraint. We illustrate this with the following example.

Example 3 Let X = x1, x2, . . . , x10 be an ordered sequence of variables with do-
mains D(xi) = {0, 1} for i ∈ {3, 4, 5, 6, 7, 8} and D(xi) = {0} for i ∈ {1, 2, 9, 10}. Let
S = {1}. Consider the constraint sequence(X, S, 5, 2, 3), i.e., every sequence of
5 consecutive variables must take between 2 and 3 values in S. The first among
constraint imposes that at least two variables out of {x3, x4, x5} must be 1. Hence,
at most one variable out of {x6, x7} can be 1, by the third among. This implies that x8

must be 1 (from the last among). Similarly, we can deduce that x3 must be 1. This is,
however, not deduced by our algorithm, as can be readily verified.

The problem occurs in the Compare method, when we merge the valid arcs coming
from the different projections. Up until that point there is a direct equivalence
between a path in a local graph and a support for the constraint. However the union
of the two projections breaks this equivalence and thus prevents this algorithm from
establishing domain consistency.

4 Reaching domain consistency through regular

The regular constraint [10], defining the set of allowed tuples for a sequence of
variables as the language recognized by a given automaton, admits an incremental
filtering algorithm establishing domain consistency. In this section, we give an au-
tomaton recognizing the tuples of the sequence constraint whose number of states
is potentially exponential in q. Through that automaton, we can express sequence
as a regular constraint, thereby obtaining domain consistency.

The idea is to record in a state the last q values encountered, keeping only the
states representing valid numbers of 1’s for a sequence of q consecutive variables
and adding the appropriate transitions between those states. Let Qq

k denote the
set of strings of length q featuring exactly k 1’s and q − k 0’s; there are

(q
k

)
such

strings. Given the constraint sequence(X, {1} , q, �, u), we create states for each of
the strings in

⋃u
k=� Qq

k. By a slight abuse of notation, we will refer to a state using the
string it represents. Consider a state d1d2 . . . dq in Qq

k, � ≤ k ≤ u. We add a transition
on 0 to state d2d3 . . . dq0 if and only if d1 = 0 ∨ (d1 = 1 ∧ k > �). We add a transition
on 1 to state d2d3 . . . dq1 if and only if d1 = 1 ∨ (d1 = 0 ∧ k < u).

We must add some other states to encode the first q − 1 values of the sequence:
one for the initial state, two to account for the possible first value, four for the first
two values, and so forth. There are at most 2q − 1 of those states, considering that
some should be excluded because the number of 1’s does not fall within [�, u]. More
precisely, we will have states

q−1⋃

i=0

min(i,u)⋃

k=max(0,�−(q−i))

Qi
k.

We define transitions from a state d1 . . . di in Qi
k to state d1 . . . di0 in Qi+1

k on
value 0 and to state d1 . . . di1 in Qi+1

k+1 on value 1, provided such states are part
of the automaton. Every state in the automaton is considered a final (accepting)
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Fig. 2 Automaton for sequence(X, {1} , 4, 1, 2)

state. Figure 2 illustrates the automaton that would be built for the constraint
sequence(X, {1} , 4, 1, 2).

The filtering algorithm for regular guarantees domain consistency provided that
the automaton recognizes precisely the solutions of the constraint. By construction,
the states Qq

� of the automaton represent all the valid configurations of q consecutive
values and the transitions between them imitate a shift to the right over the sequence
of values. In addition, the states Qi

�, 0 ≤ i < q are linked so that the first q values
reach a state that encodes them. All states are accepting states so the sequence of
n values is accepted if and only if the automaton completes the processing. Such
a completion corresponds to a successful scan of every subsequence of length q,
precisely our solutions.

The resulting algorithm runs in time linear in the size of the underlying graph,
which has O(n2q) vertices and arcs in the worst case. Nevertheless, in many practical
problems q is much smaller than n. Note also that subsequent calls to the algorithm
run in time proportional to the number of updates in the graph and not to the size of
the whole graph.

5 Reaching domain consistency in polynomial time

The filtering algorithms we considered thus far apply to sequence constraints with
fixed among constraints for the same q, �, and u. In this section we present a
polynomial-time algorithm that achieves domain consistency in a more generalized
setting, where we have m arbitrary among constraints over sequences of consecutive
variables in X. These m constraints may have different � and u values, be of different
length, and overlap in an arbitrary fashion. However, they must be defined using the
same set of values S. A conjunction of k sequence constraints over the same or-
dered set of variables, for instance, can be expressed as a single generalized sequence
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constraint. We define the generalized sequence constraint, gen-sequence, formally
as follows:

Definition 4 (Generalized sequence constraint) Let X = x1, . . . , xn be an ordered
sequence of variables (according to their respective indices) and S be a set of
domain values. For 1 ≤ j ≤ m, let s j be a sequence of consecutive variables in X,∣
∣s j

∣
∣ denote the length of s j, and integers � j and u j be such that 0 ≤ � j ≤ u j ≤ ∣

∣s j
∣
∣. Let

� = {s1, . . . , sm} , L = {�1, . . . , �m} , and U = {u1, . . . , um}. Then

gen-sequence(X, S, �, L, U) =
m∧

j=1

among(s j, S, � j, u j).

For simplicity, we will identify each s j ∈ � with the corresponding among con-
straint on s j. As before, we will assume without loss of generality that D(xi) ⊆ {0, 1}
and S = {1}. The basic structure of the filtering algorithm for the gen-sequence
constraint is presented as Algorithm 2. The main loop, CompleteFilteringGS, is
based on the standard shaving process, which works as follows. If a variable-value
pair is yet unsupported, we temporarily make the corresponding variable assignment
and check its consistency via procedure CheckConsistency. If this assignment
makes the constraint inconsistent, we remove the value from the domain of the
variable under consideration; otherwise we (implicitly) mark this variable-value pair
as supported.

Procedure CheckConsistency is the heart of the algorithm. It finds one solution
to the gen-sequence constraint, or proves that none exists. It uses a single array
y of length n + 1, such that y[0] = 0 and y[i] represents the number of 1’s among
x1, . . . , xi. The invariant for y maintained throughout is that y[i + 1] − y[i] is either 0
or 1. Initially, we start with the lowest possible array, in which y is filled according to
the lower bounds of the variables in X.

For clarity, let L j and R j denote the left and right end-points, respectively, of
the among constraint s j ∈ �; note that R j = L j +

∣
∣s j

∣
∣ − 1. As an example, for the

usual sequence constraint with among constraints of size q, L j would be j and R j

would be j + q − 1. The value of s j is computed using the array y: value(s j) = y[R j] −
y[L j − 1]. In other words, value(s j) counts exactly the number of 1’s in the sequence
s j. Hence, the constraint s j is satisfied if and only if � j ≤ value(s j) ≤ u j. In order to
find a solution, we consider all among constraints s j ∈ �. Whenever a constraint s j is
violated, we make it consistent by “pushing up” either y[R j] or y[L j − 1]:

if value(s j) < � j , then push up y[R j] with value � j − value(s j),
if value(s j) > u j, then push up y[L j − 1] with value value(s j) − u j.

Such a “push up” may result in the invariant for y being violated. We therefore
repair y in a minimal fashion to restore its invariant as follows. Let y[idx] be the
entry that has been pushed up. We first push up its neighbors on the left side (from
idx downward), starting with idx − 1. In case xidx−1 is fixed to 0, we push up y[idx − 1]
to the same level y[idx]. Otherwise, we push it up to y[idx] − 1. This continues until
the difference between all neighbors to the left of idx is at most 1 and respects the
values of the fixed variables. Whenever y[i] > i for some i during this process, this
indicates that we need more 1’s than there are variables up to i, and we therefore
report an immediate failure. Repairing the array on the right side of idx is done in a
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similar manner. Here, in case xidx+1 is fixed to 1, we push up y[idx + 1] to y[idx] + 1.
Otherwise, we push it up to the same level y[idx]. The process continues to the right
as far as necessary.

Algorithm 2 Complete filtering algorithm for the gen-sequence constraint

COMPLETEFILTERINGGS X S 1 Σ L U begin
for xi X do

for d D xi do
if CHECK CONSISTENCY xi d false then

D xi D xi d

end

sub CHECKCONSISTENCY xi d begin
fix xi d, i.e., temporarily set D xi d
y 0 0
for 1 n do

y number of forced 1 s among x1 x
while a constraint sj Σ is violated, i.e., value s j j or value s j u j do

if value s j j then
idx right end-point of s j

PUSHUP idx j value s j

else
idx left end-point of s j
PUSHUP idx value s j u j

if s j still violated then
return false

return true
end

sub PUSHUP idx v begin
y idx y idx v
if y idx idx then return false

y
while idx 0 y idx y idx 1 1 y idx y idx 1 1 1 D xidx 1 do

if 1 D xidx 1 then
y idx 1 y idx

else
y idx 1 y idx 1

if y idx 1 idx 1 then
return false

idx idx 1
y

while idx n y idx y idx 1 0 y idx y idx 1 0 0 D xidx do
if 0 D xidx then

y idx 1 y idx 1
else

y idx 1 y idx

idx idx 1
end
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Fig. 3 Finding a minimum solution to Example 4

Example 4 Consider the constraint sequence(X, S, 3, 2, 2) with X = {x1, x2, x3, x4,

x5, x6}, D(xi) = {0, 1} for i ∈ {1, 2, 3, 4, 6}, D(x5) = {1}, and S = {1}. The four among
constraints are over s1 = {x1, x2, x3}, s2 = {x2, x3, x4}, s3 = {x3, x4, x5}, and s4 =
{x4, x5, x6}. We apply CheckConsistency to find the “minimum” solution to this con-
straint. (We defer a formal discussion of the minimum solution to next subsection.)
The various steps are depicted in Fig. 3.

We start with y = [0, 0, 0, 0, 0, 1, 1] because x5 is forced to be 1, and then evaluate
the different among constraints to check whether any of them is violated. We first
consider s1, which is violated: value(s1) = y[3] − y[0] = 0 − 0 = 0, while it should be
at least 2. Hence, we push up y[3] by 2 units, and obtain y = [0, 0, 1, 2, 2, 3, 3] after
repairs. Note that we push up y[5] to 3 because x5 is fixed to 1. Next we consider
s2 with value y[4] − y[1] = 2, which is not violated. We continue with s3 with value
y[5] − y[2] = 2, which is not violated. Then we consider s4 with value y[6] − y[3] = 1,
which is violated as it should be at least 2. Hence, we push up y[6] by 1, and obtain
y = [0, 0, 1, 2, 2, 3, 4]. As there are no more violated among constraints, we conclude
consistency, with minimum solution x1 = 0, x2 = 1, x3 = 1, x4 = 0, x5 = 1, x6 = 1.

The basic procedure in Algorithm 2 can be optimized in several ways; our im-
plementation includes these optimizations. The main loop of CompleteFilteringGS
is improved by maintaining a support for all domain values. Specifically, one call
to CheckConsistency (with a positive response) yields a support for n domain
values. This immediately reduces the number of calls to CheckConsistency by half,
while in practice the cumulative reduction is even more. A second improvement
is achieved by starting out CompleteFilteringGS with the computation of the
“minimum” and the “maximum” solutions to gen-sequence, in a manner very
similar to the computation in CheckConsistency but without restricting the value
of any variable. This defines bounds ymin and ymax within which y must lie for all
subsequent consistency checks (details are presented in the following section). As
we will shortly see, this is further generalized to maintaining one minimum and
one maximum solution for each variable-value pair, yielding an improvement in the
cumulative time complexity of the algorithm from the root of the search tree to any
leaf.

5.1 Analysis

A solution to a gen-sequence constraint can be thought of as the corresponding
binary sequence given by the x array or, equivalently, as the cumulative y array.
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This y array representation has a useful property which we use for analyzing the
correctness and the complexity of the algorithm. Let y and y′ be two solutions.
Define array y ⊕ y′ to be the smaller of y and y′ at each point, i.e., (y ⊕ y′)[i] =
min(y[i], y′[i]).

Lemma 2 If y, y′ are solutions to a gen-sequence constraint, then so is y ⊕ y′.

Proof Suppose for the sake of contradiction that y∗ = y ⊕ y′ violates an among
constraint s of the gen-sequence constraint. Let L and R denote the left and
right end-points of s, respectively. Suppose y∗ violates the � constraint, i.e., y∗[R] −
y∗[L − 1] < �(s). Since y and y′ satisfy s, it must be that y∗ agrees with y on one
end-point of s and with y′ on the other. W.l.o.g., assume y∗[L − 1] = y′[L − 1] and
y∗[R] = y[R]. By the definition of y∗, it must be that y[L − 1] ≥ y′[L − 1], so that
y[R] − y[L − 1] ≤ y[R] − y′[L − 1] = y∗[R] − y∗[L − 1] < �(s). In other words, y
itself violates s, a contradiction. A similar reasoning works when y∗ violates the u
constraint of s. ��

As a consequence of this property, we can unambiguously define an absolute
minimum solution for gen-sequence as the one whose y value is the point-wise
lowest over all solutions. Denote this solution by ymin; we have that for all solutions
y and for all i, ymin[i] ≤ y[i]. Similarly, define the absolute maximum solution, ymax.
For clarity, we will only focus on the minimum solution, which suffices for the proofs
that follow; our implementation uses both the minimum and the maximum solutions
to reduce the running time in practice.

Lemma 3 The procedure CheckConsistency constructs the minimum solution to the
sequence constraint and the gen-sequence constraint, or proves that none exists,
in time O(n2) and O(n3), respectively.

Proof CheckConsistency reports success only when no among constraint in gen-
sequence is violated by the current y values maintained by it, i.e., y is a solution.
Hence, if there is no solution, this fact is detected. We will argue that if there is a
solution, CheckConsistency reports success and its current y array exactly equals
ymin.

We first show by induction that y never goes above ymin at any point, i.e.,
y[i] ≤ ymin[i], 0 ≤ i ≤ n throughout the procedure. For the base case, y[i] is clearly
initialized to a value not exceeding ymin[i], and the claim holds trivially. Assume
inductively that the claim holds after processing t ≥ 0 among constraint violations.
Let s be the t + 1st violated constraint processed. We will show that the claim still
holds after processing s.

Let L and R denote the left and right end-points of s, respectively. First consider
the case that the � constraint was violated, i.e., y[R] − y[L − 1] < �(s), and index R
was pushed up so that the new value of y[R], denoted ŷ[R], became y[L − 1] + �(s).
Since this was the first time a y value exceeded ymin, we have y[L − 1] ≤ ymin[L − 1],
so that ŷ[R] = y[L − 1] + �(s) ≤ ymin[L − 1] + �(s) ≤ ymin[R]. Therefore, ŷ[R] itself
does not exceed ymin[R]. It may, in principle, still be the case that the resulting repair
on the left or the right causes a ymin violation. However, the repair operations only
lift up y values barely enough to be consistent with the possible domain values of the
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relevant variables. In particular, repair on the right “flattens out” y values to equal
ŷ[L − 1] (forced 1’s being exceptions) as far as necessary to “hit” the solution again.
It follows that since ŷ[R] ≤ ymin[R], all repaired y values must also not go above ymin.
A similar argument works when instead the u constraint is violated. This finishes the
inductive step.

This shows that by performing repeated PushUp operations, one can never
accidentally “go past” the solution ymin at any point. Further, since each PushUp
increases y in at least one place, repeated calls to it will eventually “hit” ymin as a
solution.

For the time complexity of CheckConsistency, note that y[i] ≤ i. Since we
monotonically increase the y values, we can do so at most

∑n
i=1 i = O(n2) times. The

cost of each PushUp operation can be charged to the y values it changes because the
while loops in it terminate as soon as they find a y value that need not be changed.

Finally, we discuss the detection of the violated among constraints during Check-
Consistency. For this, we maintain a stack of indices, corresponding to (possibly)
violated constraints. When processing a constraint, we remove it from the stack, and
potentially push up some indices to make it consistent. Whenever we push up yi, we
insert all violated among constraints that have i as a left or right endpoint. In the case
of the normal sequence constraint, we check in constant time whether si or si+1−q

should be added to the stack. This yields the desired overall time complexity of O(n2).
Notice that the stack is of size O(n2), because we only insert pushed-up indices, of
which there are at most O(n2) during the process. In the case of the gen-sequence
constraint, we maintain additionally two vectors indicating for each index i the
among constraints that start, respectively end, at i. Notice that at most n constraints
can start or end at an index i. Using this representation, the detection of violated
among constraints for pushed up index i takes at most O(n) time, which results in a
net worst-case time complexity of O(n3) for the gen-sequence constraint. ��

Theorem 1 Algorithm CompleteFilteringGS establishes domain consistency on the
gen-sequence constraint. Further, it can be implemented such that along every
path from the root to a leaf of the search tree, it takes time O(n3) for the sequence
constraint and O(n4) for the gen-sequence constraint.

Proof Lemma 3 and the simple loop structure of CompleteFilteringGS together
imply that we obtain domain consistency (or prove inconsistency) each time the
algorithm is invoked. To obtain the desired time complexity from the root to a leaf
of the search tree, we maintain for every variable-value pair a minimum y solution.
There are O(n) such minimum solutions, each of size n. When checking consistency
of such a pair, we start from the corresponding minimum y solution and update it
if we find a new one at this point in the search tree. As we proceed from the root
to a leaf in the search tree, these minimum solutions can only (point-wise) increase.
Moreover, the number of push-ups is at most O(n2) for each variable-value pair from
the root to a leaf, following the same reasoning as in the proof of Lemma 3. It follows
that for all n variables, we obtain a time complexity of O(n3) for the sequence
constraint, and O(n4) for the gen-sequence constraint, along every path from the
root to a leaf in the search tree. ��
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6 Experimental results

To evaluate the different filtering algorithms presented, we used three sets of
benchmark problems. The first is a very simple model, constructed with only one
sequence constraint, allowing us to isolate and evaluate the performance of each
method separately. We then report the results of a series of experiments on the well-
known car sequencing problem. Finally, we consider a combination of sequence
constraints of varied lengths, to evaluate the gen-sequence constraint.

In the following, Successive Local Graph (SLG), regular-based implementation
(REG), and Generalized Sequence (GS) are compared with the sequence con-
straint implementation provided in the Ilog Solver library in both basic (IB) and
extended (IE) propagation modes. Experiments were run with Ilog Solver 6.2 on a
dual processor Intel Xeon HT 2.8 Ghz machine with 3 GB RAM.

6.1 A single sequence constraint

To evaluate the filtering both in terms of domain reduction and efficiency, we build
a very simple model consisting of only one sequence constraint. The instances are
generated in the following manner. All instances contain n variables of domain size d
and the set S is composed of the first d/2 elements. We generate a family of instances
by varying the sequence size q and the difference between � and u, � = u − �.
For each family we try to generate 10 challenging instances by randomly filling the
domain of each variable and by enumerating all possible values of �. These instances
are then solved using a random choice for both variable and value selection, keeping
only the ones that are solved with more than 10 backtracks by method IB. All runs
were stopped after one minute of computation. The runtimes in seconds (CPU) and
the number of backtracks (BT) are reported as the average over various instances
with the same parameters.

Table 1 reports on instances with a fixed number of variables (n = 100) and
varying q and �. Table 2 reports on instances with a fixed � (= 1) and a growing
number n of variables.

These results demonstrate that the new filtering algorithms are very efficient.
Both REG and GS require no backtracks because they achieve domain consistency.
The average number of backtracks for SLG is also typically very low. As predicted
by its time complexity, GS is very stable for fixed n in the first table but becomes
more time consuming as n grows in the second table. The performance of SLG and

Table 1 Comparison on instances with n = 100, d = 10

q � IB IE SLG REG GS
BT CPU BT CPU BT CPU BT CPU BT CPU

5 1 — — 33,976.9 18.210 0.2 0.069 0 0.009 0 0.014
6 2 361,770 54.004 19,058.3 6.390 0 0.078 0 0.018 0 0.013
7 1 380,775 54.702 113,166.0 48.052 0 0.101 0 0.020 0 0.012
7 2 264,905 54.423 7,031.0 4.097 0 0.129 0 0.039 0 0.016
7 3 286,602 48.012 0 0.543 0 0.129 0 0.033 0 0.015
9 1 — — 60,780.5 42.128 0.1 0.163 0 0.059 0 0.010
9 3 195,391 43.024 0 0.652 0 0.225 0 0.187 0 0.016

Best results for each line are presented in bold
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Table 2 Comparison on instances with � = 1, d = 10

q � IB IE SLG REG GS
BT CPU BT CPU BT CPU BT CPU BT CPU

5 50 459,154 18.002 22,812 18.019 0.4 0.007 0 0.001 0 0.001
5 100 192,437 12.008 11,823 12.189 1.0 0.041 0 0.005 0 0.005
5 500 48,480 12.249 793 41.578 0.7 1.105 0 0.023 0 0.466
5 1000 942 1.111 2.3 160.000 1.1 5.736 0 0.062 0 4.374
7 50 210,107 12.021 67,723 12.309 0.2 0.015 0 0.006 0 0.001
7 100 221,378 18.030 44,963 19.093 0.4 0.059 0 0.010 0 0.005
7 500 80,179 21.134 624 48.643 2.8 2.115 0 0.082 0 0.499
7 1000 30,428 28.270 46 138.662 588.5 14.336 0 0.167 0 3.323
9 50 18,113 1.145 18,113 8.214 0.9 0.032 0 0.035 0 0.001
9 100 3,167 0.306 2,040 10.952 1.6 0.174 0 0.087 0 0.007
9 500 48,943 18.447 863 65.769 2.2 4.311 0 0.500 0 0.485
9 1000 16,579 19.819 19 168.624 21.9 16.425 0 0.843 0 3.344

Best results for each line are presented in bold

REG decreases as q grows but REG remains competitive throughout these tests. We
expect that the latter would suffer with still larger values of q and � but it proved
difficult to generate challenging instances in that range—they tended to be loose
enough to be easy for every algorithm.

6.2 Car sequencing

In order to evaluate our algorithms in a more realistic setting, we turned to the car
sequencing problem (see prob001 of CSPLib [8] for a detailed description). We ran
experiments using the first set of 78 instances on CSPLib. Table 3 compares and
contrasts the effectiveness of the following combinations of among constraints. IE, as
before, is the extended IloSequence constraint available in the ILOG Solver library.
This constraint also allows one to specify individual cardinalities for values in the set
S, and is thus richer than our basic version of sequence. REG, again as before, is
the sequence constraint encoded as a regular constraint. cREG extends REG by
including a cost variable [6] that restricts the total number of cars with a particular
option. This is more expressive than the normal sequence constraint, but not as rich
as the IloSequence constraint IE. Finally, GSa is the gen-sequence constraint that
includes the normal sequence constraint along with an additional among constraint
restricting the total number of cars with a particular option, similar to cREG and
again not as rich as IE.

In addition to these constraints, we also consider the combinations IE+REG,
IE+cREG, and IE+GSa, where REG, cREG, and GSa, respectively, are added to
the IloSequence constraint as redundant constraints. We note that all versions were
run with two different search heuristics: the specialized ordering proposed by Régin
and Puget [13] for the car sequencing problems, and the min-domain ordering. In the
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Table 3 Runtime comparison on car sequencing problems

instance IE REG cREG GSa IE+REG IE+cREG IE+GSa

carseq01 0.39 0.04 0.06 0.03 0.41 0.49 0.42
carseq02 83.83 — 19.92 19.63 95.99 19.92 18.57
carseq03 0.60 — 0.04 0.65 0.76 0.74 0.63
carseq07 112.97 — 18.24 27.70 138.19 114.98 93.38
carseq08 0.34 0.07 0.08 0.03 0.36 0.41 0.32
carseq09 18.74 2253.14 21.82 16.92 22.80 20.71 18.50
carseq10 — — 1361.94 912.00 — 4.06 3.64
carseq11 1.31 — 0.46 0.20 1.32 1.66 1.67
carseq12 24.36 — — — 23.93 38.75 48.80
carseq13 1.37 — 0.35 0.18 1.40 1.76 1.53
carseq14 2.93 — — — 2.92 3.16 3.11
carseq15 3.13 0.07 0.41 0.23 3.47 3.45 3.70
carseq16 87.09 — — — 105.28 3.50 2.84
carseq17 2.83 0.07 0.43 0.32 3.13 3.44 3.46
carseq19 — — 2.54 1.35 — — —
carseq20 — — 0.43 0.18 — 9.58 8.51
carseq21 1.54 — — — 1.56 1.92 1.69
carseq22 451.83 — 0.47 0.18 516.35 899.38 914.96
carseq23 1.58 — — — 1.53 1.92 1.85
carseq24 3.35 — — — 3.37 3.63 3.27
carseq30 — — 1774.50 1484.62 — — —
carseq31 1.70 71.91 0.48 0.18 1.71 2.09 1.95
carseq33 5.11 239.02 2.64 1.46 6.73 7.99 6.26
carseq34 3.75 — — — 3.79 4.20 3.94
carseq41 1.83 0.07 0.34 0.16 1.86 2.20 1.97
carseq43 4.69 137.48 28.75 12.78 4.83 5.46 5.24
carseq44 3.94 — — — 3.89 4.19 4.03
carseq48 4.04 0.46 3.88 3.07 4.14 4.12 4.29
carseq49 4.00 93.10 1928.90 659.18 4.01 4.60 4.28
carseq51 4.46 0.07 0.40 0.20 4.49 4.93 4.27
carseq53 4.35 — 0.58 0.35 4.90 4.71 4.64
carseq54 4.54 0.08 0.68 0.37 4.15 4.96 4.81
carseq55 4.46 0.06 0.40 0.23 4.13 4.41 4.70
carseq58 4.30 0.08 0.43 0.34 4.30 2.42 2.12
carseq59 4.15 0.06 0.35 0.23 4.23 4.53 4.41
carseq61 5.05 — — 5.19 5.40 5.26
carseq62 3.24 0.07 0.33 0.25 3.34 3.61 3.46
carseq63 4.98 1321.83 190.42 68.42 5.45 5.80 5.65
carseq65 5.07 — — 5.10 5.45 5.41
carseq67 3.08 0.12 1.25 0.61 3.72 3.52 2.93
carseq70 6.33 0.08 0.37 0.29 6.46 6.75 6.65
carseq72 202.28 — — — 213.92 180.55 154.64
carseq73 5.96 — — — 6.08 6.57 6.23
carseq74 5.92 0.06 0.50 0.33 6.02 6.26 6.24
carseq75 3.16 0.06 0.34 0.18 1.78 2.00 2.15
carseq76 7.03 2.02 4.38 2.38 7.00 7.50 7.30
carseq78 5.55 0.08 0.34 0.27 5.60 5.85 5.88
total solved 43 24 35 35 43 45 45

Best results for each line are presented in bold
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Table 4 gen-sequence constraint on sequences of varied lengths

instance gcc’s + sequence’s gen-sequence

characteristics size #solutions BT CPU BT CPU

max6/8-min22/30 40 2,284 185,287 216.49 0 0.77
50 4,575 186,408 369.12 0 2.09
60 6,567 188,242 621.99 0 3.60
70 2,810 195,697 840.52 0 1.88
80 730 198,091 1061.62 0 0.61

max6/9-min20/30 40 3 393,748 390.93 0 0.01
50 3 393,748 660.74 0 0.02
60 3 393,748 1074.26 0 0.03
70 3 393,748 1432.20 0 0.04
80 3 393,748 1786.62 0 0.05

max7/9-min22/30 40 137,593 328,376 417.63 0 34.43
50 388,726 456,937 1061.24 0 150.87
60 718,564 729,766 2822.09 0 339.89
70 105,618 1,743,518 5048.84 0 60.82
80 22,650 1,847,335 7457.36 0 15.41

Best results for each line are presented in bold

table, we report the best time (in seconds) for each version.1 The time out used for
these experiments was one hour.

Table 3 indicates that no single filtering method clearly dominates the others
on this relatively complex problem domain. On the positive side, it also shows
that our proposed algorithms can be very effective here, either applied solely or
as a redundant constraint in conjunction with IloSequence. Specifically, many of
the instances can be solved much faster with one of our algorithms than with
IloSequence. For example, on all instances that are solved by both GSa and IE, the
GSa algorithm achieves a median speed-up of 11.3 times. Furthermore, there are 4
instances (namely, carseq10, carseq19, carseq20, and carseq30) that cannot be solved
using IloSequence alone within a one hour time limit, while applying our algorithms
cREG and GSa does allow solving them. The most striking examples are carseq19
and carseq20, which can now be solved in 0.18 and 1.35 seconds, respectively, by
using the GSa algorithm.

6.3 Multiple sequence constraints of varied lengths

Table 4 evaluates the performance of the gen-sequence constraint on three
families of instances constructed so that they are challenging for a CP approach
using previously known constraints. The instances specify restrictions for work/rest
patterns in individual schedules of rostering problems, inspired by contexts in which
several levels of time granularity (day, week, month, year) coexist [16]. Every
instance requires between 4 and 5 days worked per calendar week. Its identification,
of the form “maxA/B-minC/D”, indicates that at most A days are worked in any B

1Details of these experiments are available from the authors upon request.
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consecutive days but that at least C days are worked in any D consecutive days.
Instance size, i.e., the number of days in the scheduling horizon, varies from 40
to 80 within each family. We wish to enumerate all the solutions. The “gcc’s +
sequence’s” model uses one gcc constraint per week and two separate sequence
constraints for the A/B and C/D restrictions. Note that the sequence constraints
are implemented with our customized algorithm. The “gen-sequence” model uses
a single gen-sequence constraint. Since we achieve domain consistency for this
constraint and the whole problem is captured by this one constraint, the number
of backtracks is always zero. These few experiments suffice to show that using the
gen-sequence constraint in the general setting can lead to computational savings
of several orders of magnitude.

7 Discussion

We proposed, analyzed, and experimentally evaluated three new filtering algorithms
for the sequence constraint. They have different strengths that complement each
other well. The local graph approach of Section 3 does not guarantee domain
consistency but often results in a significant amount of filtering, as witnessed in
the experiments. Its asymptotic time complexity is O(nq2). The reformulation as
a regular constraint, described in Section 4, establishes domain consistency but
its asymptotic time and space complexity are exponential in q, namely O(n2q).
Nevertheless it performs very well, partly due to its incremental nature, for small
values of q, not uncommon in applications: in car sequencing, values between 2 and
5 are frequent; in rostering, the shift assignment problem typically features values
between 5 and 9 whereas the shift construction problem may require values up to
12. The customized algorithm of Section 5 also establishes domain consistency on
the sequence constraint. It has an asymptotic time complexity that is polynomial in
n, namely O(n3) along each path from the root to a leaf in the search tree. Also
in practice this algorithm performed very well, being often even faster than the
local graph approach. It should be noted that previously known algorithms did not
establish domain consistency.

In our experimental section, we demonstrated the advantages of our proposed
algorithms in practice. On single sequence constraints with various parameters, our
algorithms outperform the state of the art by several orders of magnitude. In more
realistic settings such as the car sequencing problem, we showed that our algorithms
allow solving more instances, or again can improve the state of the art significantly.
Finally, on more complex combinations of among constraints, our generalized se-
quence algorithm achieves computational savings of orders of magnitude.

Our contribution extends beyond the sequence constraint and into more general
combinations of among (-like) constraints. The algorithm of Section 5 also estab-
lishes domain consistency in O(n4) time on freer combinations of among constraints,
as long as each is defined on consecutive variables with respect to a fixed ordering.
In this context, it is worth recalling that not every combination of among constraints
is tractable—Régin proved that finding a solution to an arbitrary combination of
among constraints is NP-complete [12]. Another interesting extension for our first
two algorithms is that they lend themselves to a generalization of among in which the
number of occurrences is represented by a set (as opposed to an interval of values).
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