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Montréal, Canada

May 1, 2014

Abstract

This paper studies a districting problem which arises in the context of financial
product pricing. The challenge lies in partitioning a set of small geographical regions
into a set of larger territories. In each territory, the customers will share a common
price. These territories need to be contiguous, contain enough customers and be as ho-
mogeneous as possible in terms of customer value. To address this problem we present a
column generation-based heuristic where the subproblem generates contiguous territo-
ries taken into account a non linear objective function. Computational results indicate
that the territories produced by this heuristic are about 35% more homogenous than
those previously used in practice. The developed algorithm has been transferred to a
financial firm and is now used to help craft more competitive financial products.

Keywords: Districting, financial product pricing, clustering, column generation, heuris-
tic.

1 Introduction

The districting problem consists of partitioning a geographical zone into a set of contiguous
territories while optimizing a partitioning criterion. In the literature, this problem is also
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called the districting problem (Bozkaya et al. 2003), the contiguity constrained clustering
problem (Hansen et al. 2003), the p-regions problem (Duque et al. 2011), or the zone design
problem (Bacao et al. 2005). A well-studied application of it is political districting (Ricca
and Simeone 2008). Several other applications are stated in the surveys of Duque et al.
(2007) and Ricca et al. (2011) on the districting methods developed in the last 40 years. The
districting problem is generally difficult to solve mainly because of the contiguity constraint.
Variants of the problem have been proven NP-complete.

In this paper, we focus on a variant that has not been studied yet and that arises in companies
selling a financial product whose cost price is customer-dependent but unknown a priori for
each individual customer because it is related to random events. According to the
regulations of a governmental authority, the product selling price cannot be set per customer:
it must be the same for a relatively large subset of customers. It may, however, vary from
one subset to another. The customer subsets must respect certain feasibility rules. First,
each subset must contain a sufficiently large number of customers. Second, all customers
residing in the same area (a geographical unit or GU that can be defined, e.g., according to
the zip codes) must belong to the same subset. Third, each subset is composed of a certain
number of GUs that form a contiguous territory. Furthermore, subregion constraints restrict
the number of territories that can be used in densely populated area, such as large cities.
The goal of the problem is to determine territories such that the expected cost prices of the
customers it contains are relatively the same. This allows the company to set the selling
price for a territory that seems advantageous to all customers in this territory and, thus, to
retain a large market share. There are several ways to measure the cost homogeneity inside
a territory. In this paper, the chosen criterion to be minimized is a weighted sum of each
territory variance, that is, the within-territory variance. Furthermore, in the present
case study (and many other similar contexts), the financial company is already
operating and selling products in the studied geographical zone. In such case,
it is possible to observe individual cost prices incurred during the past financial
years and to estimate the future cost price of a GU as the average of the past
cost prices over all the customers it contains. We call this problem the financial
product districting problem (FPDP) and we describe it in details in Section 3.1.

The main contribution of this paper is to present an original column generation heuristic
for solving the FPDP. In this heuristic, the column generation subproblem that generates
potential territories as needed has a quadratic objective function and is solved by a greedy
multi-start heuristic. This methodology allows to solve large-scale instances involving maps
with more than 500 GUs. It was recently implemented in a software and tested by a company
to design its future districting plans. We report the results of computational experiments
performed on some of their data sets.

The paper is organized as follows. In the next section, we review the main approaches
developed for solving districting problems. In Section 3 we give a detailed description of the
FPDP and model it as a set partitioning problem with side constraints. In Section 4 we
present the proposed algorithmic framework. The results of our computational experiments
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are reported in Section 5. Finally, conclusions are drawn in Section 6.

2 Literature review

Various applications of the districting problem have been studied including: political dis-
tricting (Ricca and Simeone 2008), police zone districting (D’Amico et al. 2002), districting
for salt spreading operations (Muyldermans et al. 2002), school districting (Ferland and
Guénette 1990), max split clustering (Hansen et al. 2003), health-related analysis (Wise
et al. 1997), homecare zone design (Blais et al. 2003), transportation area design (Tavares-
Pereira et al. 2007), electric zone design (Bergey et al. 2003ab), and census re-engineering
(Openshaw and Rao 1995). These applications involve different objective functions and con-
straints. For this reason, different heuristics were designed according to the variant of the
districting problem studied. In this section, we present a summary of the districting methods
that are closely related to the problem or the solution method presented in this paper. For
a more detailed survey, we refer the reader to the recent works of Duque et al. (2007) and
Ricca et al. (2011).

The most studied districting problem in the literature, the political districting problem
(PDP), seeks to redraw political district boundaries. It aims at dividing an electoral map
into equally populated and compact districts to prevent favoring a particular political party,
thus preventing gerrymandering. To achieve good district design, other constraints can be
added to the problem, such as socio-demographic homogeneity and similiarity to the existing
plan.

One of the features of the FPDP that sets it apart from many districting problems is that
there is no restriction on the shape of the territories. Furthermore, no equity constraint
between the territories is imposed but rather a minimum weight constraint on each territory.
Last but not least, the subregion constraints add complexity to the problem. These consid-
erations led us to discard some of the methods for the PDP that optimize the compactness
of the territories around a territory center (Hess et al. 1965).

In addition, the quadratic objective function of the FPDP, the within-territory variance, is
not frequent in the districting literature (except in Wise et al. 1997; Guo 2008) but is widely
applied and studied in classical clustering literature: see, e.g., the k-means algorithm of
MacQueen (1967), the j-means algorithm of Hansen and Mladenovich (2001), and the exact
sum of square deviations algorithm of Aloise (2009).

Below we review the main heuristic clustering methods proposed in the scientific literature.
These methods can be grouped into the following classes: conventional clustering, adapted
clustering, seeded territories, and local search. Afterwards we survey the few exact methods
developed for the districting problem.

Conventional clustering methods are carried out by first using a conventional clustering al-
gorithm and second rearranging the computed territories to make them contiguous. For
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example, the two-step algorithm proposed by Openshaw and Wymer (1995) involves ag-
gregating the GUs with respect to their expected price cost before dividing the obtained
territories by connected components and reassembling them into the required number of
territories. The method introduces homogeneity in the first step. However, the first-step
solution is often not a good starting point when contiguity is enforced in the second step.

Adapted clustering methods are primarily based on a hierarchical partitioning algorithm
where only contiguous clusters of GUs can be merged. The characteristics of these methods
are detailed in Margules et al. (1985). The principle is to agglomerate GUs iteratively until
a predefined number of territories is reached. This approach is interesting when looking for
nested solutions at different scales (that is, with different numbers of territories). However,
if a particular scale is sought, it is not the best option. Indeed, the main problem with
hierarchical clustering is that the distance between two objects can be higher than the
distance between the union of these objects and a third one. Recently, this method was
adapted by Guo (2008) and improved later on by Guo and Wang (2011).

The seeded territories method was proposed for the first time by Vickrey (1961) to solve the
PDP, and was recently used by Duque et al. (2012). In this method, each territory starts
from a ”seed” or reference GU and neighboring units are iteratively added to each territory.
The performance of the algorithm highly depends on the procedure applied to select the
seeds.

Local search methods iteratively modify an initial solution while taking into account an
aggregation criterion. At each iteration, the current solution must satisfy the contiguity
constraint. The most frequently employed moves in the literature include moving a GU from
a donor territory to a neighboring territory (Openshaw and Rao 1995; Ricca and Simeone
2008; Bozkaya et al. 2003), and swapping units between two neighboring territories (Bozkaya
et al. 2003). Other proposed moves include: merging two territories and splitting them into
two new regions (Openshaw 1978; Horn 1995), selecting a unit to create a new territory
(Horn 1995), and combining two feasible solutions using genetic algorithm operators. Using
these moves, different local search methods can be applied. For example, Ricca and Simeone
(2008) compared four different local search methods and Bozkaya et al. (2003) developed a
tabu search method. The main challenge with local search methods is to find an efficient way
to determine which GU to move without disconnecting the donor territory. This problem
belongs to the general class of subgraph connectivity (or dynamic subgraph) problems (see
Duan 2010 2011). Several solution methods have been proposed in the districting literature
to tackle it. In the first proposed methods (Nagel 1965; Openshaw 1977), contiguity of
a territory is checked by starting from a GU and adding successively all neighboring GUs.
Later, Macmillan (2001) introduced an alternative method called ”switching points”. Lately,
Ricca and Simeone (2008) formulated two conditions to ensure that contiguity is preserved
when moving a GU from one territory to another. Firstly, the GU to be moved must be
adjacent to a GU in the destination territory. Secondly, this GU must not be a cut-node of
the origin territory.

Exact solution methods have also been proposed for the districting problem. However they
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are either computationally expensive and can only solve 50-GU maps (Duque 2004; Duque
et al. 2011), or they consider a linear objective function that leads to simplifications in
the solution process (Hansen et al. 2003). On the one hand, Duque (2004) developed a
computationally expensive edge selection procedure coupled with an exponential number
of subtour breaking constraints. Later, Duque et al. (2011) enhanced this procedure with
three new ways for enforcing the spatial contiguity constraint. On the other hand, Hansen
et al. (2003) proposed to model the problem as a binary linear program with an exponential
number of constraints depending on the number of nodes (GUs) and an exact row generator
algorithm to solve 600-node instances for a specific graph partitioning problem subject to
a contiguity constraint. This model relies, however, on a linear objective function, called
the ”split”, defined as the smallest difference between a class unit and a unit outside of this
class.

Another way to solve the problem exactly is to use an optimization model that takes into
account all possible feasible territories as an input (Garfinkel and Nemhauser 1970). These
enumeration models are rather rare in the districting literature. Mehrotra et al. (1998)
adopted such a model and proposed a column generation method to solve PDP instances with
50-GU maps. Feasible territories are generated by solving a linear subproblem, where the cost
of a territory represents its compactness. Every district generated within the process satisfies
the contiguity constraint and bounds on its population. To obtain an integer solution, they
used an exact branching rule that requires model simplifications (e.g., a simplified contiguity
constraint).

3 Problem statement and mathematical formulation

In this section, we first give a detailed description of the FPDP and then present a set
partitioning formulation for the FPDP.

3.1 Problem statement

The FPDP can be defined as follows. Given a geographical map divided into a set G of
GUs, it consists of clustering the GUs into a maximum of N contiguous territories that must
contain at least Nc customers each. The values of N and Nc are usually determined by a
governmental authority. This authority may also define a set S of subregions (e.g. cities)
and impose that at most Ms territories cover the subregion s ∈ S. These constraints aim
at preventing the company from over-segmenting the most populous areas of the map. Note
that the constraint on the minimum number of customers per territory must be satisfied only
when the territories are determined, that is, there is no need to recompute new territories if
the number of customers in a territory drops below Nc later.

The objective of the FPDP is to build territories that are homogeneous as much as possible

5



with regards to the cost price of the customers they contain. To do so, the chosen criterion
to be minimized is a weighted sum of each territory variance, that is, the within-territory
variance. In this sum, the weight of a territory corresponds to the number of customers it
contains. Its variance is computed by assuming that each customer in a GU has the same
cost price, namely, an estimate of the average cost price of these customers. Minimizing this
criterion is equivalent to maximizing the between-territory variance, that is, the weighted
sum of the square differences between each territory mean and the total mean (Apostol and
Mnatsakanian 2003).

In this work, we make the following assumptions:

1. all GUs in G are disjoint and, for each GU g ∈ G, the following data are given:

ug, its (current) number of customers;

pg, its expected cost price per customer; and

(xg, yg), the position of its centroid;

2. a territory is connected (contiguous) if every pair of GUs in this territory can be linked
through a sequence of adjacent GUs belonging to the territory;

3. a territory is said to cover a subregion if it contains at least one GU of that subregion;

4. an initial solution (a set of territories T0) is generally provided. In this case, a minimum
number of territories from this solution, denoted N0, can be required to be part of the
solution to compute.

The expected cost price pg for a GU g ∈ G is usually obtained based on historical data.
Note that using expected cost prices instead of probability distributions of the cost prices is
a simplification to the problem that is justified by the complexity of solving it.

Often, the initial solution T0 might be composed of the territories currently in use that we
want to reoptimize. In this case, the number of customers in the territories in T0 might have
evolved over time and some of these territories might not be feasible anymore with respect
to the minimum number of customers in a territory. The proposed algorithm can handled
such an initial solution.

3.2 Mathematical formulation

Before presenting the proposed mathematical formulation for the FPDP, suppose that the
set T of all feasible territories is known, where a territory is deemed feasible if it is contiguous
and contains at least Nc customers. Then, the cost price variance vt for each territory t ∈ T
can be computed as follows. Let ut =

∑
g∈t ug be the total number of customers in t (where
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g ∈ t means GU g belongs to territory t), which also corresponds to its weight. The average
cost price p̄t of t is

p̄t =

∑
g∈t ugpg

ut
(1)

and its cost price variance vt is, therefore, given by

vt =

∑
g∈t ug(pg − p̄t)2

ut
. (2)

For each territory t ∈ T , we define for each GU g ∈ G a binary parameter agt that is
equal to 1 if territory t contains g and 0 otherwise, and for each subregion s ∈ S, a binary
parameter bst that takes value 1 if territory t covers subregion s and 0 otherwise.

Associating with each territory t ∈ T a binary decision variable Yt equal to 1 if territory
t is selected and 0 otherwise, we can formulate the FPDP as the following set partitioning
model with side constraints:

Minimize
∑
t∈T

utvtYt (3)

subject to:
∑
t∈T

agtYt = 1, ∀ g ∈ G (4)

∑
t∈T

Yt ≤ N, (5)

∑
t∈T0

Yt ≥ N0, (6)

∑
t∈T

bstYt ≤Ms, ∀ s ∈ S (7)

Yt ∈ {0, 1}, ∀ t ∈ T. (8)

The objective function (3) aims at minimizing the within-territory variance (the weighted
sum of the cost price variances of the chosen territories). Constraints (4) ensure that each
GU is assigned to one territory. Constraint (5) imposes an upper bound on the number
of territories used in the computed solution. Because using additional territories can only
reduce the within-territory variance, this bound is always reached in an optimal solution.
Constraint (6) enforces a minimum number of territories to keep from the initial solution. If
no initial solution is provided or N0 = 0, constraint (6) is omitted. Constraints (7) restrict
the number of territories that can be used to cover each subregion.

Let sqt be the weighted sum of square deviations from the mean in territory t, also called
the intrinsic second moment:

sqt =
∑
g∈t

ug(pg − p̄t)2. (9)
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Because sqt = utvt for all t ∈ T , one can remark that the objective function corresponds to
minimizing the sum of the intrinsic second moments of the chosen territories.

Note that the set partitioning formulation (3)–(8) has the advantage of being linear (omitting
the binary requirements on the Yt variables). This linearity is possible because we assume
that the territories in set T can be enumerated a priori and, consequently, that the values of
ut and vt for each territory t ∈ T can also be computed before solving the program. Under
this assumption, model (3)–(8) can be solved directly by a mixed integer programming solver.
In practice, the complete enumeration of set T is only achievable for small instances because
the size of T grows exponentially with the size of G. To avoid a complete enumeration,
we propose in the next section a column generation heuristic that can be applied to solve
large-scale FPDP instances.

4 Solution method

This section describes the heuristic that we propose for solving the FPDP. This method is
based on the powerful linear programming technique called column generation (Dantzig and
Wolfe 1960; Gilmore and Gomory 1961; Desaulniers et al. 2005). Column generation is an
iterative algorithm that allows to solve efficiently certain linear programs containing a huge
number of variables without enumerating them all a priori. The variables are associated with
a set of combinatorial objects (routes, schedules, cutting patterns, territories) that can be
represented implicitely in an optimization model. For solving the FPDP, column generation
replaces the a priori enumeration of all possible territories (the columns) by a sequence of
iterations in which potentially improving territories are generated and added to the model
as needed. Our method differs from that of Mehrotra et al. (1998) in several points. In
their method, the territories have to respect a compactness constraint. This is why they
chose a linear objective function and a simplified contiguity constraint that enable them
to generate only compact territories. In our problem, the objective function is quadratic
and the contiguity constraint is considered explicitly, as no compactness is imposed. The
quadratic form of the objective function together with the contiguity constraint makes the
column (territory) generation subproblem difficult to solve. For this reason, we propose to
solve the subproblem using a heuristic instead of an exact algorithm (see Section 4.3). In
addition, Mehrotra et al. (1998) use an exact branching scheme to obtain an integer solution.
In our approach, we rely on a heuristic branching process that does not allow backtracking
in the search tree (see Section 4.4).

In the following, we describe first the main scheme of the proposed heuristic before providing
details on its components.
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4.1 Main algorithm

The pseudo-code of the main algorithm is given in Algorithm 1. Starting from an empty set
of feasible territories T ′, the algorithm adds territories to T ′ using two procedures. Given an
initial solution, the procedure Split&Merge is called first in Step 2. It splits the territories
from the initial solution in various ways and merges the resulting subterritories to create new
territories. In Step 3, a column generation procedure is applied to generate new territories.
This column generation process exploits the linear relaxation of model (3)–(8) restricted
to the current set of territories T ′ to identify new territories that have the potential to
improve the current linear programming (LP) solution. If the column generation process
stops with an integer LP solution, the overall algorithm terminates. Otherwise, model (3)–
(8) restricted to the current set of territories T ′ is solved in Step 8 using a commercial mixed
integer programming (MIP) solver such as Gurobi. Because this step can be highly time-
consuming, we impose a time limit of pMaxTime seconds, where pMaxTime is a parameter.
The best integer solution found during this step, if any, is then displayed.

In the hope of finding a first integer solution or an improving one if one was previously
found in Step 8, the solution process proceeds to a sequence of branching decisions (Step 13)
interspersed by calls to the column generation procedure (Step 15). The branching decisions
are imposed to force the respect of the integrality requirements. Column generation is
invoked to add territories to T ′ that can be seen as complementary to the imposed decisions.
Note that, to avoid excessive computational times, the decisions are fixed permanently, that
is, no backtracking is performed (the heuristic is then termed a diving heuristic). However,
to keep some flexibility toward the end of the solution process, we stop imposing branching
decisions when the current LP solution Y LP contains less than pMinFrac fractional-valued
variables, where pMinFrac is a parameter of predetermined value. At that moment, if the
current LP solution is integer, the heuristic stops. Otherwise, model (3)–(8) restricted to the
current set of territories T ′ is solved in Step 19 using a MIP solver (without any time limit).
The best integer solution found, if any, is then outputted. Our computational experiments
show that this solution is often better than the one produced in Step 8.

Steps 8 to 21 can thus be seen as the application of two different heuristics to derive a good
integer solution. The first (Step 8) exploits the power of a commercial MIP solver on a
restricted set of potential territories. The second (Steps 12 to 21) is a diving heuristic that
generates new territories after imposing each branching decision and can, therefore, yield a
better integer solution.

The procedure Split&Merge, the column generation process and the types of branching de-
cisions imposed are discussed in Subsections 4.2, 4.3 and 4.4, respectively.
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Algorithm 1 Main algorithm

1: T ′ := ∅
2: Call procedure Split&Merge to create new territories and add them to T ′

3: Apply column generation to add new territories to T ′

4: Store the current LP solution, denoted Y LP hereafter
5: if Y LP is integer then
6: Output this solution and its cost
7: else
8: Solve integer model (3)–(8) restricted to T ′ (subject to time limit pMaxTime)
9: if a feasible integer solution is found then

10: Output this solution and its cost
11: Restore solution Y LP

12: while the current solution contains at least pMinFrac fractional-valued variables do
13: Impose a branching decision
14: Remove from T ′ the territories that are in conflict with this decision
15: Apply column generation to add new territories to T ′

16: if the current solution is integer then
17: Output this solution and its cost
18: else
19: Solve integer model (3)–(8) restricted to T ′

20: if a feasible integer solution is found then
21: Output this solution and its cost

4.2 Procedure Split&Merge

Column generation heuristics perform better when initialized with a set of ”good” columns.
To generate an initial set of territories, we propose a procedure called Split&Merge that
splits multiple times each territory of an initial solution (i.e., the territories in T0) into two
subterritories, and merges these subterritories to create new territories containing two or
three subterritories. The subterritories themselves are also considered as new territories. If
no initial solution is provided, an initial solution can be generated using the seeded territory
method described in Section 2 and used by Mehrotra et al. (1998) to initialize their column
generation algorithm.

A pseudo-code of the procedure Split&Merge is given in Algorithm 2, where P is the set of
the pairs of subterritories obtained by splitting in two the territories in T0, whereas L1, L2

and L3 are sets containing the new territories composed of one, two and three subterritories,
respectively. In Steps 4 to 8, each initial territory t ∈ T0 (feasible or not) is split into various
pairs of subterritories. Each split is done by considering a line cutting the territory into
two subterritories and then associate each GU in t with the subterritory that contains its
centroid. A line is defined by a point (x̄, ȳ) ∈ R2 and an angle θ:

{(x, y) ∈ R2 | y = ȳ + tan θ (x− x̄)}.
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Algorithm 2 Procedure Split&Merge

1: L1 = L2 = L3 := ∅
2: for all t ∈ T0 do
3: P := ∅
4: for i = 0 to pNoSpc do
5: for j = 0 to pNoSpc do
6: for k = 1 to pNoAng do
7: Create the pair of subterritories (t1, t2) obtained from the line defined by the

triplet (xti, ytj, θtk)
8: P := P ∪ {(t1, t2)}
9: if |P | > pMaxNoSub then

10: Sort the pairs (t1, t2) in P in increasing order of their score wt1,t2
11: Keep the first pMaxNoSub pairs and delete the others from P
12: for all (t1, t2) ∈ P do
13: L1 := L1 ∪ {t1, t2}
14: for all t1 ∈ L1 do
15: for all t2 ∈ L1 such that t1 6= t2 do
16: Create a new territory t := t1 ∪ t2
17: L2 := L2 ∪ {t}
18: for all t1 ∈ L1 do
19: for all t2 ∈ L2 such that t1 6⊆ t2 do
20: Create a new territory t := t1 ∪ t2
21: L3 := L3 ∪ {t}
22: Check the feasibility of all territories in L1 ∪ L2 ∪ L3 and remove all infeasible ones
23: Return L1 ∪ L2 ∪ L3

According to such a line, the subterritories t1 and t2 are given by:

t1 = {g ∈ t | yg ≤ ȳ + tan θ (xg − x̄)}

and
t2 = {g ∈ t | yg > ȳ + tan θ (xg − x̄)}.

Figure 1 illustrates the split of a territory t in two subterritories (one in light grey and the
other in dark grey) according to a line defined by the indices i = 1, j = 2 and an angle θ
close to −π

4
. Note that the resulting subterritories t1 and t2 are retained even if they are not

feasible territories (due to contiguity or to the number of customers they contain). Indeed,
merging them with other subterritories may yield feasible territories.

The set of lines used to generate the pairs of subterritories from a territory t is determined
through a discretization of the xy-plane and the interval [−π

2
, π

2
] for the angle θ. This

discretization relies on the two parameters, namely, pNoSpc the number of subdivisions of
the x-axis (or the y-axis) over the region covered by a territory and pNoAng the number of
subdivisions of [−π

2
, π

2
].

Let xmint = ming∈t xg, y
min
t = ming∈t yg, x

max
t = maxg∈t xg, and ymaxt = maxg∈t yg be the
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Figure 1: Splitting a territory in two subterritories

minimum and maximum x- and y-coordinates of the centroids of the GUs in territory t. For
all i, j ∈ {0, 1, . . . , pNoSpc} and k ∈ {1, 2, . . . , pNoAng}, a line is defined for the triplet

(xti, ytj, θtk) =

(
xmint +

i

pNoSpc
(xmaxt − xmint ), ymint +

j

pNoSpc
(ymaxt − ymint ),−π

2
+

k

pNoAng
π

)
.

Notice that different lines can yield the same pair of subterritories.

The pairs of subterritories resulting from the splitting process are kept in set P . At the end of
the splitting process, if |P | exceeds a predetermined value given by parameter pMaxNoSub,
the elements (t1, t2) in P are sorted in Step 10 in increasing order of their score wt1,t2 =
ut1vt1 +ut2vt2 (the more homogeneous are the subterritories, the lower the score of the pair).
Then, only the first pMaxNoSub elements in P are kept, the others are discarded in Step 11.

Once the best pairs of subterritories are selected, the procedure constructs territories with
one, two or three subterritories in Steps 12–13, Steps 14–17, and Steps 18–21, respectively.
Finally, in Step 22, all created territories in lists L1, L2 and L3 are checked for feasibility
(minimum number of customers and contiguity); infeasible ones are rejected.

Note that when a line is used to split a territory, it can yield more than two connected
subterritories (for example, when the territory has a U-shape). In this case, the set P not
only contains pairs of subterritories but also subsets of more than two subterritories. These
subsets are treated similarly to the pairs.

4.3 Column generation
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Algorithm 3 Column generation procedure
1: repeat
2: Solve the RMP considering only the current subset of territories T ′

3: Using the dual solution of the RMP, define the objective function of the subproblem
(see formula (10) below)

4: Solve the subproblem in the hope of finding negative reduced cost territories
5: if negative reduced cost territories are found then
6: Add these territories to T ′

7: until No territories with a negative reduced is found

When applied to the linear relaxation of model (3)–(8) that is then called the master problem,
column generation proceeds as follows (see Algorithm 3). Starting from an initial set T ′ of
territories, the algorithm solves at each iteration a restricted master problem (RMP) in
Step 2 and a column generation subproblem in Step 4. The RMP corresponds to the master
problem restricted to the current set of territories T ′. It is solved by an LP solver such as
the simplex algorithm to provide a primal solution and a dual solution. The subproblem
aims at finding feasible territories t ∈ T \T ′ that can be added to set T ′ to possibly improve
the solution of the current RMP, that is, territories whose corresponding variables Yt have a
negative reduced cost with respect to the current RMP dual solution (in a more concise way,
we will say negative reduced cost territories). This dual solution is, therefore, used in Step 3
to define the subproblem objective function. When such territories are found, they are added
to T ′ in Step 6 before launching a new iteration. Otherwise, the column generation process
stops. When the subproblem is solved to optimality, that is, when negative reduced cost
territories are identified if some exist, the optimal solution of the last RMP is also optimal for
the master problem and provides a lower bound on the optimal value of the integer model.

In the main algorithm of our heuristic for solving the FPDP (see Algorithm 1), column
generation is invoked twice, namely, in Steps 3 and 15. In Step 3, column generation starts
with the set T ′ obtained from the procedure Split&Merge. In Step 15, it begins with the
current set T ′. Note that in both cases, the initial set of columns does not guarantee the
feasibility of the first RMP. Indeed, as mentioned in Section 3.1, the initial solution T0 might
not be feasible with respect to the minimum number of customers in a territory and, in
this case, the territories provided by the procedure Split&Merge might not be sufficient to
yield a feasible RMP. Furthermore, in Step 14, territories that do not respect the imposed
branching decisions are removed from T ′ which might also yield an infeasible RMP. To ensure
feasibility, we add to every constraint (4) and (6) an artificial variable that has a huge cost.
A solution is deemed feasible only if all artificial variables take value 0.

Let πg, g ∈ G, σ, β, and αs, s ∈ S, be the dual variables associated with the constraints
(4)–(7), respectively. Given this notation, the reduced cost c̄t of variable Yt, t ∈ T , is:

c̄t = utvt − σ −
∑
g∈G

agtπg −
∑
s∈S

bstαs. (10)

The subproblem consists of finding territories t ∈ T with c̄t < 0. Equivalently, it can be
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stated as finding a territory with the least reduced cost and expressed as:

min
t∈T

c̄t.

The ”best” mathematical programming formulation that we could develop for this subprob-
lem (see de la Poix de Fréminville 2012) is an integer program that involves a quadratic
function and an exponential number of constraints (with respect to the number of GUs) to
impose contiguity. Because the subproblem seems very hard to solve exactly, we propose a
multi-start greedy heuristic for solving it, i.e., for finding negative reduced cost territories.

The greedy component of the heuristic has some similarities with the seeded territories
method described in Section 2. It starts from an initial territory (possibly infeasible with
respect to the number of customers it contains) and increases it in a greedy fashion by
selecting at each iteration a GU to add to it based on a best insertion criterion. More
precisely, let t be the current territory at a given iteration. For each GU g that is adjacent
to t, the reduced cost c̄t∪{g} of the potential territory t∪{g} is computed using formula (10).
Among the evaluated territories, the one yielding the lowest reduced cost is selected to pursue
the search and is referred hereafter to a visited territory. Note that all potential territories
must be connected but do not have to satisfy the constraint on the minimum number of
customers. All potential territories satisfying this constraint and having a negative reduced
cost are added to the current set of territories T .

The algorithm is called multi-start algorithm because it starts from various initial territories
and even from the same territory several times. Two different sets of initial territories are
considered, namely, the set of territories containing each a single GU and the set of territories
associated with each basic variable in the current basis of the RMP. The latter set contains
territories that have a zero reduced cost; therefore, they are good starting points to search for
negative reduced cost territories. They also allow the generation of territories containing a
relatively large number of GUs. At the opposite, the former set offers the possibility to create
territories that contains a small number of GUs and that can be seen as complementary to
the large ones.

The algorithm uses a list of already visited territories to avoid visiting the same territory
several times (hence, it is possible to start from the same initial territory several times). In
fact, to ensure fast computational times, this list is rather approximated by a set of keys
associated with the visited territories. In our case, the key corresponds to the total number
of customers in a territory. All keys associated with the visited territories are registered in
a set K. Any territory, other than an initial territory, whose key belongs to set K cannot
be visited anymore. Note that set K is emptied at the beginning of each column generation
iteration.

The multi-start greedy algorithm is controlled by the following four parameters:

pNoTrialsGU : number of times that each GU is used as an initial territory;

pNoGreedyItGU : maximum number of iterations (territory increases) performed by the
greedy algorithm for each initial territory corresponding to a GU;
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pNoTrialsBsc: number of times that each territory associated with a basic RMP variable
is used as an initial territory;

pNoGreedyItBsc: maximum number of iterations performed by the greedy algorithm for
each territory associated with a basic variable.

A pseudo-code describing it is given in Algorithm 4. Steps 2 to 8 apply the greedy procedure
pNoTrialsGU times on the set of initial territories composed of a single GU, whereas Steps 9
to 15 apply it pNoTrialsBsc times on the set B of initial territories associated with the basic
RMP variables.

In Steps 6 and 13 of Algorithm 4, the procedure IncreaseTerritory is called to find the
GU to add to the current territory t. A pseudo-code for this procedure is presented in
Algorithm 5. In Step 2, At indicates the set of GUs that are adjacent to territory t. The
loop in Steps 2–9 finds the cheapest GU that can be added to the current territory t. In this
loop, tmp denotes a potential territory whose reduced cost is computed in Step 5 if it has
not been visited previously according to set K (Step 4). The value of vtmp is computed from
vt as explained in the following paragraph. Given the subregions covered by territory t, the
contribution of the dual variables to the reduced cost (10) of tmp can easily be computed
from t. In Step 6, the feasibility of tmp with regards to the number of customers is checked.
If tmp is feasible and has a negative reduced cost, it is added to the overall current set T ′

of territories (those in the RMP or already generated in this column generation iteration) in
Step 7. If needed, the best insertion is updated in Steps 8 and 9. The procedure returns the
best potential territory, if any, in Steps 10 to 13.

We recall that the average cost price p̄t of a territory t ∈ T and its cost price variance vt
are given by formulae (1) and (2). Given the average cost price p̄t of territory t, the average
cost price and cost price variance of a territory t ∪ {g} for g ∈ At can be computed as:

p̄t∪{g} =
1

ut + ug
(utp̄t + pg) (11)

vt∪{g} =
1

ut + ug

∑
h∈(t∪{g})

uh(ph − p̄t∪{g})2. (12)

To improve computational efficiency, we rather used the following formulae that were proven
in Apostol and Mnatsakanian (2003):

p̄t1∪{g} =
1

(ut1 + ug)

(
ut1 p̄t1 + ugp̄g

)
(13)

vt1∪{g} =
1

(ut1 + ug)

(
ut1vt1 +

ut1ug
ut1 + ug

|p̄t1 − p̄g|2
)
. (14)

These formulae enable computing the reduced cost of a potential territory in Step 5 of
Algorithm 5 with a constant time complexity, given that we store the average cost price and
the cost price variance of the current territory t.
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Algorithm 4 Procedure MultiStartGreedy

1: K := ∅
2: for i := 1→ pNoTrialsGU do
3: for all g ∈ G do
4: t := {g}, j := 1
5: while j ≤ pNoGreedyItGU and t 6= NULL do
6: t := IncreaseTerritory(K, t)
7: if t 6= NULL then
8: K := K ∪ {t}
9: for i := 1→ pNoTrialsBsc do

10: for all t ∈ B do
11: j := 1
12: while j ≤ pNoGreedyItBsc and t 6= NULL do
13: t := IncreaseTerritory(K, t)
14: if t 6= NULL then
15: K := K ∪ {t}

Algorithm 5 Procedure IncreaseTerritory(K, t)

1: c̄min :=∞, gmin := NULL
2: for all g ∈ At do
3: tmp := t ∪ {g}
4: if tmp 6∈ K then
5: Compute c̄tmp
6: if c̄tmp < 0 and tmp is feasible then
7: T ′ := T ′ ∪ {tmp}
8: if c̄tmp < c̄min then
9: c̄min := c̄tmp, gmin := g

10: if gmin 6= NULL then
11: Return t ∪ {gmin}
12: else
13: Return NULL
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Finally, note that the proposed multi-start greedy heuristic constructs new territories only by
adding GUs to visited territories. It does not allow to remove a GU from a visited territory
because this operation can yield a non-contiguous territory and checking contiguity of the
resulting territory is rather time-consuming.

4.4 Branching decisions

In Step 13 of Algorithm 1, branching decisions are imposed permanently to reduce the total
computational time and to guide the solution process toward a good-quality integer solution.
Two types of decisions can be imposed that we call column fixing and GU pair fixing.

Column fixing: The variable Yt with the highest fractional value in the current RMP
solution is fixed at one. Let t̃ be the territory associated with this decision. Then all
territories t ∈ T ′ such that t 6= t̃ and t∩ t̃ 6= ∅ are removed from T ′ in Step 14 of Algorithm 1
and their corresponding variables from the RMP.

GU pair fixing: For each pair of adjacent GUs (g1, g2) ∈ G2 (with g1 6= g2), the following
value is computed: fg1,g2 =

∑
t∈T ′

g1,g2
Ŷt, where Ŷt is the value of Yt in the current RMP

solution and T ′g1,g2 ⊆ T ′ is the subset of territories containing both GUs g1 and g2. The
pair (g1, g2) with the highest fractional value fg1,g2 is selected and the decision imposes that
these two GUs be covered by the same territory. All territories in T ′ covering either g1

or g2 but not both are then removed from T ′ in Step 14 and their corresponding variables
from the RMP. Furthermore, the multi-start greedy algorithm is modified to ensure that all
new territories to be generated cover either both GUs g1 and g2, or none of them. To do
so, an aggregated GU representing g1 and g2 is created. In the greedy algorithm, g1 or g2

cannot be added individually to a territory (nor can they serve as initial territories). Only
the aggregated GU can be added (and can serve as an initial territory). Note that further
decisions can yield an aggregated GU that represents more than two GUs.

These two types of branching decisions are combined in the following way. If there exists
a variable Yt taking a fractional value greater than or equal to a prespecified threshold
pMinThCol, column fixing is applied. Otherwise, GU pair fixing is used. Priority is thus
given to column fixing unless only a doubtful decision can be imposed. In this case, a less
aggressive GU pair fixing decision is made.

5 Computational experiments

In this section, we present the computational results obtained by the proposed algorithm on
real-life instances. All computational experiments were conducted on a personal computer
operating under Linux, equipped with an Intel Core i7 CPU 960 clocked at 3.2GHz and 24GB
of RAM. The algorithm was implemented in C++ and relied on the Gurobi commercial MIP
solver, version 5.1, for solving the integer programs in Steps 8 and 19 of Algorithm 1.
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In the following, instead of reporting the value of the solutions according to the objective
function (3), that is, their within-territory variance vwithin, we rather report the within-
cluster correlation coefficient rwithin that is defined as the proportion of the total variance
due to the within-territory variance:

rwithin =
vwithin
vtot

where vtot =
∑

g∈G ug(pg−p̄)2∑
g∈G ug

and p̄ =
∑

g∈G ugpg∑
g∈G ug

. Because vtot is a constant, the two measures

vwithin and rwithin are equivalent from an optimization point of view. However, the coefficient
rwithin (∈ [0, 1]) allows to better evaluate and compare different solutions for the same in-
stance or for different instances. The lower the value, the higher the impact of the districting
proposed by a solution.

5.1 Test instances

For our computational experiments, we use two instances of the FPDP that were defined on
a single 522-GU map containing a 101-GU subregion. This map, provided by our industrial
partner (who wishes to remain anonymous), must be partitioned into a maximum of 55
territories such that at most 10 of them can cover the subregion. Our partner also supplied
two real-life datasets (one for each instance) that were collected in two different years of
operations. Each dataset indicates the number of customers in each GU and its expected
cost price per customer. All input and output information were handled and visualized using
the MapInfo Geographical Information System. MapInfo was also used to extract additional
geographical information such as the adjacency of GUs. For each instance, we also had access
to the territories used by our partner that served as an initial solution for our heuristic.

5.2 Results and sensitivity analysis

We performed several test runs of the proposed heuristic to determine empirically a good
parameter setting. We opted for the values reported in Table 1.

pMaxTime = 7200s pNoTrialsGU = 2 pNoGreedyItGU = 30

pNoSpc = 20 pNoTrialsBsc = 3 pNoGreedyItBsc = 10

pNoAng = 20 pMinFrac = 10 pMinThCol = 0.7

Table 1: Selected parameter values

Parameter pMaxTime was set to a sufficiently large value to allow, most of the times, the
computation of the best integer solution in Step 8 of Algorithm 1. Parameters pNoSpc
and pNoAng were also set to large values that ensure generating the maximum number of
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subterritory pairs in the procedure Split&Merge. The results of a sensitivity analysis on the
value of the other parameters are given below.

The results of our computational experiments are reported in Tables 2 and 3 for the first
and the second instance, respectively (assuming that no initial territories must be kept,
that is, N0 = 0). In these tables, each line provides the results of a test performed with a
specific parameter configuration. This parameter configuration is described in the first six
columns (the first four parameters concern the multi-start greedy Algorithm 4, the last two
the branching process). In fact, the first line indicates a reference configuration and, for
clarity purposes, each subsequent line only identifies the parameter value that differs from
the reference configuration. For each parameter configuration, we report nine statistics in
the remaining nine columns. The first set of two columns reports the value of rwithin for
the solution computed in Step 8 of Algorithm 1 and for the best solution found overall,
respectively. The second set of five columns reports the time spent: (i) in the root node
(procedure Split&Merge and column generation), (ii) for solving the integer program in
Step 8, (iii) for performing the branching (including the column generation reoptimizations),
(iv) for solving the reduced integer program in Step 19 of Algorithm 1, and (v) for performing
the overall algorithm. The last two columns indicate the number of column fixing decisions
and of GU pair fixing decisions applied, respectively. All reported times are in seconds. A
dash in the column rwithin MIP Step 8 means that no integer solution was found within
the 7200-second time limit. Furthermore, the best value in each of the rwithin columns is
highlighted in bold. Finally, averages (excluding the entries with a dash) are reported in the
last line of each table.

Looking at Tables 2 and 3, one can notice the robustness of the proposed heuristic since
the parameters setting changes do not affect too much the solution quality. Both integer
programs in Steps 8 and 18 of Algorithm 1 produce solutions with similar rwithin values,
but we observe that in two cases for the first instance, no feasible solutions were found in
Step 8 within the 7200-second time limit. Consequently, the branching phase combined with
column generation allows to slightly improve solution quality but also brings reliability in the
solution process. In terms of computational effort, the difference yielded by varied parameter
configurations is much more significant, but in all cases compatible with a planning process
that is conducted about once a year. We observe that, for the first instance, solving the
integer programs in Step 8 requires the largest proportion of the total computational time
on average. This is not the case for the second instance where the branching phase is, on
average, the most time consuming. These results show that the time devoted to Step 8 may
vary substantially from one instance to another (even of the same size) and that imposing
a time limit in Step 8 allows to avoid excessive computational times. Note that instances
involving much more than 500 GUs are common in practice. In fact, most of the 512 GUs
of the map that we used for our tests correspond to clusters of smaller-sized GUs that were
determined by our industrial partner in a preprocessing step to ease their manual solution
process.

The solutions provided by our partner exhibit rwithin values of 22.9 for the first instance and

19



50.7 for the second one. The proposed heuristic is thus able to reduce the key performance
index by about 35% and has been implemented by our partner to help support decisions
during future districting exercises.

It is difficult to provide optimality gaps for the computed solutions because no tight lower
bounds are available. In fact, to compute lower bounds, one would need to either rely on
a nonlinear model (either for a direct solution or as a column generation subproblem) or
to enumerate all potential territories and solve the linear relaxation of model (3)–(8). The
former option is out of the scope of this paper and the latter is doable only for very small
instances. Consequently, to provide insight into the quality of the solutions produced by our
heuristic, we performed the following experiment. Using Algorithm 1, we solved the first
instance described above but restricted to only the 101 GUs of its subregion that must be
partitioned into 10 territories. Then, for each pair of adjacent territories in the computed
solution, we checked (by explicit enumeration) if these two territories provide an optimal
partition for the GUs contained in these territories. The results indicate that an optimal
partition is obtained for 15 of the 16 adjacent pairs. For the other pair, an optimality gap
of 5.7% was observed. Consequently, the proposed algorithm seems sufficiently effective to
provide solutions that cannot be easily improved by a simple enumeration.
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5.3 Preserving some initial territories

In some cases, a company may want to limit the number of initial territories it has to modify.
In fact, re-designing territories often implies additional fixed costs for each modified territory.
For this reason, we introduced constraint (6) in the mathematical formulation (3)–(8) of the
FPDP. With this functionality, the company can evaluate the gain brought by a modification
of an initial territory compared to the cost of modifying its average pricing. Initial territories
to be preserved are not selected in advance, but selected during the optimization process. To
test this functionality, we conducted a series of experiments on FPDP instances derived from
the first instance used in our previous tests. All these instances considered only the 101-GU
subregion of the whole map that must be partitioned into a maximum of 10 territories. The
instances only vary by the number of initial territories N0 that must be kept. Note that, in
the solution provided by our industrial partner for the first instance, these GUs are covered
by exactly 10 territories that do not cover GUs outside the subregion. For these tests, the
proposed heuristic used the reference parameter configuration given in Section 5.2

Table 4 reports the results obtained from these experiments where the value of N0 varies
between 0 and 9 (the columns have the same meaning as in Tables 2 and 3). The case N0 = 0
corresponds to preserving no initial territories (if not advantageous). The case N0 = 9 is
equivalent to the case N0 = 10 where all initial territories must be kept. In this case, no
optimization is required and the solution has an rwithin value of 48.66. First, we observe that
the solution computed with N0 = 0 yields a 45% reduction of the rwithin value compared
to the initial solution. As expected the rwithin value of the best solution found increases
regularly with the value of N0 except for the case N0 = 1 for which a better solution than
with N0 = 0 was computed. This exception is due to the heuristic nature of our solution
method. Like for the first instance treated in Section 5.2, most of the time is devoted to
solving the integer program in Step 8 of Algorithm 1. Notice that even for a 101-GU instance,
the 7200-second time limit was reached for the case N0 = 3. This is the only case where
branching was able to improve upon the solution computed in Step 8.

6 Conclusion

The FPDP is a complex industrial problem that challenges financial corporations. Although
it shares common features with other districting problems, its unique definition prevents
one from using an existing methodology to address it. In this paper we introduced a col-
umn generation-based heuristic that can compute solutions which are significantly better (by
about 35%) than those currently use in practice. Furthermore, the proposed methodology
allows to control the level of changes from a current set of territories, for cases where per-
turbing all territories is not acceptable. The developed methodology has been transferred to
a financial corporation and is now used to craft the territories and set the financial product
cost prices.
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rwithin CPU time (s) No. fixed
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0 26.83 26.83 55 4229 78 8 4370 2 9
1 26.66 26.66 68 755 8 170 1001 0 0
2 27.49 27.49 64 459 56 36 615 1 4
3 34.44 28.23 84 7200 116 1 7401 2 27
4 29.49 29.49 70 1475 76 50 1671 0 5
5 32.76 32.76 104 2247 193 1 2545 1 26
6 35.86 35.86 117 682 277 3 1079 0 27
7 41.93 41.93 133 630 276 0 1039 2 37
8 43.87 43.87 103 78 284 4 469 3 18
9 - 48.66 - - - - - - -

Table 4: Results for a 101-GU instance with a varying number of initial territories preserved
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Montréal, 2009.

T. M. Apostol and M. A. Mnatsakanian. Sums of squares of distances in m-space. American
Mathematical Monthly, 110(2):516–526, 2003.

F. Bacao, V. Lobo, and M. Painho. Applying genetic algorithms to zone design. Soft
Computing, 9:341–348, 2005.

P.K. Bergey, C.T. Ragsdale, and M. Hoskote. A decision support system for the electrical
power districting problem. Decision Support Systems, 36:1–17, 2003a.

P.K. Bergey, C.T. Ragsdale, and M. Hoskote. A simulated annealing genetic algorithm for
the electrical power districting problem. Annals of Operations Research, 121:33–55, 2003b.

M. Blais, S. Lapierre, and G. Laporte. Solving a home-care districting problem in an urban
setting. The Journal of the Operational Research Society, 54(11):1141–1147, 2003.

B. Bozkaya, E. Erkut, and G. Laporte. A tabu search heuristic and adaptive memory
procedure for political districting. European Journal of Operational Research, 144:12–26,
2003.

S.J. D’Amico, S.J. Wang, R. Batta, and C.M. Rump. A simulated annealing approach to
police district design. Computers & Operations Research, 29:667–684, 2002.

24



G.B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations Re-
search, 8:101–111, 1960.
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